नोट : प्रथम, द्वितीय, तृतीय एवं चौथा प्रश्नपत्र हल करना अनिवार्य है। वैकल्पिक ग्रुप में से कोई 01 प्रश्नपत्र हल करना अनिवार्य है। कुल 05 प्रश्नपत्र हल करना अनिवार्य है।

Note: Each section is compulsorily written on separate answer sheet.

H-2541

M. A. / M. Sc. (Second Semester) Examination, 2021

MATHEMATICS

Paper : First

(Advanced Abstract Algebra-II)

Maximum Marks : 40 (Regular) / 50 (Private)

Note: Attempt all questions. Each question carry equal marks. Each question must be answered in maximum 800 words.

- 1. If A and B are submodules of an R-module M, then prove that the sum A+B is also a submodule of M.
- 2. Prove that $\operatorname{Hom}_{R}(M, M)$ is a skew-field where M is a simple module.
- 3. State and prove Hilbert basis theorem.
- 4. Let M be a notherian module or any sub-module over a noetherian ring. Then prove that each non-zero submodule contains a uniform module.
- 5. If $T \in A(V)$ is nilpotent, then prove that

 $\alpha_0 + \alpha_1 T + \dots + \alpha_m T^m$

where $\alpha_i \in F$ is invertible if $\alpha_0 \neq 0$.

H-2542

M. A. / M. Sc. (Second Semester) Examination, 2021

Paper : Second

(Lebesgue Measure & Integration)

Maximum Marks : 40 (Regular) / 50 (Private)

Note: Attempt all questions. Each questions carry equal marks. Each question must be answered in maximum 800 words.

[1]

- 1. Prove that every interval is measurable.
- 2. State and prove Lebesgue Monotone convergence theorem.

H-2541/2542/2543/2544/2551/2552/2553/2554

- 3. Let [a,b] be a finite interval and let $f \in L(a,b)$ with indefinite integral *F*, then prove that F' = f a.e. in [a,b].
- 4. State and prove Minkowski's inequality.
- 5. Explain almost uniform convergence and show that if $f_n \to f$ a.u., then $f_n \to f$ a.e.

H-2543

M. A. / M. Sc. (Second Semester) Examination, 2021

Paper : Tjord

(Topology-II)

Maximum Marks : 40 (Regular) / 50 (Private)

Note: All questions are compulsory. Each questions carry equal marks. Each question must be answered in maximum 800 words.

- 1. Prove that every completely regular space is regular.
- 2. Let X be a Hausdorff space. Then prove that X is locally compact at x if and only if for every neighbourhood U of x such that \overline{V} is compact and $\overline{V} \subset U$.
- 3. Prove that the product of finitely many connected spaces is also connected.
- 4. Let X, Y be topological spaces, $x_0 \in X$ and $f: X \to Y$ a function. Then prove that f is continuous at x_0 if and only if whenver a net S converges to x_0 in X, the net $f \circ S$ converges to $f(x_0)$ in Y.
- 5. Define path connected space and simply connected space. Prove that in a simply connected space *X*, any two paths having the same initial and final points are path homotopic.

H-2544

M. A. / M. Sc. (Second Semester) Examination, 2021

Paper : Fourth

(Complex Analysis-II)

Maximum Marks : 40 (Regular) / 50 (Private)

Note: All questions are compulsory. All questions carry equal marks. Each question must be answered in maximum 800 words.

- 1. Prove the relation between Gamma and Zeta function.
- 2. State and prove Runge's theorem.
- 3. State and prove Monodromy theorem.

- 4. State and prove Jenson's Inequality.
- 5. Prove that an entire function with more than are finite Lacunary values reduces to a constant.

H-2551

M. A. / M. Sc. (Second Semester) Examination, 2021

Paper : Fifth (i) (Optional)

(Differential Equations-II)

Maximum Marks : 40 (Regular) / 50 (Private)

Note: All questions are compulsory. All questions carry equal marks. Each question must be answered in maximum 800 words.

1. Let $f(t, y, z, z^*)$ be a continuous function on an open (t, y, z, z^*) -set *E* such that *f* has continuous partial derivatives of all orders not exceedings $m, m \ge 1$, with respect to the components of *y* and *z*. Then

$$y' = f(t, y, z, z^*), y(t_0) = y_0$$

has a unique solution $\eta = \eta(t, t_0, y_0, z, z^*)$ for fixed z, z^* with $(t_0, y_0, z, z^*) \in E$, and η has all continuous partial derivatives of the form

$$\frac{\partial^{i+i_0+\alpha_1+\ldots+\alpha_d+\beta_1+\ldots+\beta_e}\eta}{\partial t^i\partial t_0^{i_0}\partial (y_0^1)^{\alpha_1}\ldots \partial (y_0^{d})^{\alpha_d}\partial (z')^{\beta_1}\ldots \partial (z^e)^{\beta_e}},$$

where $i \leq 1$, $i_0 \leq 1$ and $i_0 + \sum \beta_k + \sum \alpha_j \leq m$.

- 2. Assume that f(y) is continuous on an open y-set E and that $C^+: y = y_+(t)$ is a solution of y' = f(y) for $t \ge 0$. Then $\Omega(C^+)$ is closed. If C^+ has a compact closure in E, then $\Omega(C^+)$ is connected.
- 3. Let q(t) be real valued and continuous for $J : a \le t < w(\le \infty)$. Then u'' + q(t)u = 0 is disconjugate on J if and only if there exists a continuously differentiable function r(t) for a < t < w such that $r^1 + r^2 + q(t) \le 0$.
- 4. Let A(t) be continuous and of period p. Then for a fixed continuous g(t) of period p,

$$y' = A(t)y + g(t)$$

has a solution of period p if and only if

$$y' = A(t)y + g(t)$$

has at least one bounded solution for $t \ge 0$.

5. Let f(t, x, x') be continuous for $(0 \le t \le p)$ and all (x, x') and satisfy a Lipschitz condition with respect to x, x' of the form

$$\left\| f\left(t, x_{1}, x_{1}'\right) - f\left(t, x_{2}, x_{2}'\right) \right\| \leq \theta_{0} \left\| x_{1} - x_{2} \right\| + \theta_{1} \left\| x_{1}' - x_{2}' \right\|$$

with Lipschitz constants θ_0 , θ_1 so small that

$$\frac{\theta_0 p^2}{8} + \frac{\theta_1 p}{2} < 1$$

Then x'' = f(t, x, x') has a unique solution satisfying x(0) = 0, x(p) = 0.

H-2552

M. A. / M. Sc. (Second Semester) Examination, 2021

Paper : Fifth (ii) (Optional)

(Advanced Discrete Mathematics-II)

Maximum Marks : 40 (Regular) / 50 (Private)

Note: All questions are compulsory. All questions carry equal marks. Each question must be answered in maximum 800 words.

1. Using Dijkstra's Algorithm find the shortest path from a to z in the given graph where numbers associated with the edges are the weights.

2. Draw and describe the state graph for the finite state machine given below :

State	Input			Output
	0	1	2	
S ₀	S ₀	S_1	<i>S</i> ₂	0
S_1	S_1	S_2	S ₀	1
S_2	S_2	S_0	S_1	2

3. Consider the Moore machine described by the given table. Construct the corresponding Mealy machine.

Present State	Next State		Output
	a = 0	a = 1	
S_1	S_1	S_2	0
S_2	S_1	S_3	0
S_3	S_1	S_3	1

- 4. Define turning machine and give an example.
- 5. State and prove pumping lemma.

H-2553

M. A. / M. Sc. (Second Semester) Examination, 2021

MATHEMATICS

Paper : Fifth (iii) (Optional)

(Differential Geometry of Manifolds-II)

Maximum Marks : 40 (Regular) / 50 (Private)

Note: All questions are compulsory. All questions carry equal marks. Each question must be answered in maximum 800 words.

- 1. Describe in detail with example the induced bundle.
- 2. State & prove Schur's lemma.
- If y: [a, b] → m be a continuous curve with finite length in a Riemannian manifold, then show that y can be uniformly approximated by broken geodesic.
- 4. Describe the Mainardi-Codazzi equations.
- 5. Describe contravariant and covariant almost analytic vector fields.

H-2554

M. A. / M. Sc. (Second Semester) Examination, 2021 MATHEMATICS Paper : Fifth (iv) (Optional)

(Programming in 'C')

Maximum Marks : 25 (Regular) / 35 (Private)

Note: All questions are compulsory. All questions carry equal marks. Each question must be answered in maximum 800 words.

- 1. Write a C-program to check whether a given year is a leap year or not.
- 2. Explain Break Statement with suitable program.
- 3. Explain increment and decrement operators with example. If x = 4, y = 3 then find z = (x + +) + (y + +).
- 4. Describe the procedure of passing an array in the function argument.
- 5. Write a C-program to implement structure of an employee that cotain fields emp ID, emp_Name, empdesignation and emp_salary and submission of N employee salary.